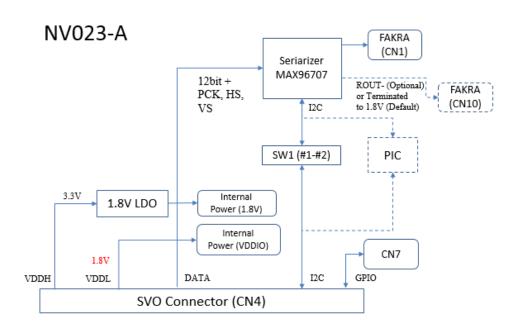
NV023-A / GMO-96707 (GMSL 出力基板) ハードウェア仕様書

第3版

株式会社ネットビジョン

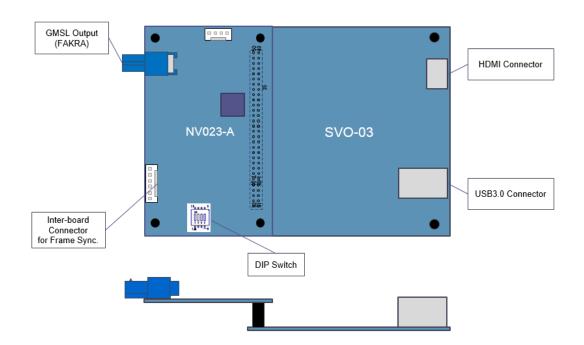
改訂履歴

版数	日付	内容	担当
第1版	2018/11/13	初版作成	山田
第2版	2019/02/21	コネクター覧の誤記を修正	山田
		同期配線図を追加	
第3版	2020/06/25	「I2C バス」と「主要諸元」の表記ミスを修正	山田


目次

1.	•	概要	ļ
2.	•	基板形状	3
	2.1.	コネクタ配置図	3
	2.2.	基板写真	7
3.		詳細	7
	3.1.	コネクター覧表	7
	3.2.	コネクタ詳細	3
	3.3.	DIP スイッチ設定10)
	3.3.1	. SW1 (MAX96707 / I2C 接続設定))
	3.4.	I2C バス10)
	3.5.	電源10)
	3.6.	シリアライザ出力11	1
4.	•	主要諸元11	1
5.	•	Appendix	2
	5.1.	基板寸法図12	2
	5.2.	PIC マイコン周辺回路図13	3
	5.3.	4 CH 同期出力システムでの配線例	3

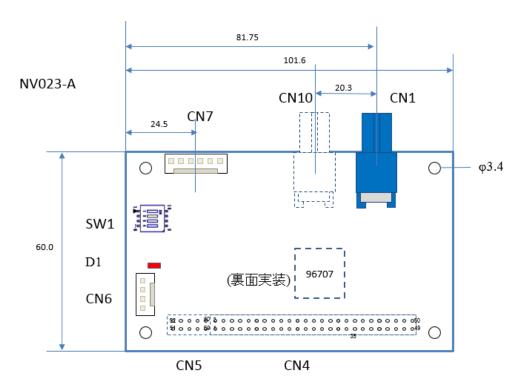
1. 概要


本仕様書は NV023-A「GMSL 出力基板」のハードウェア仕様書です。NV023-A 基板(以下本基板と表記)は、MAXIM 社シリアライザ MAX96707 を搭載し、パラレル形式で入力された映像信号を GMSL 信号に変換するための基板です。本基板は FAKRA 規格の同軸出力コネクタ、弊社 SVO シリーズ(SVO-03 etc.)と接続するための入力コネクタを持ちます。また、カメラの I2C エミュレーション用に PIC マイコンを実装することが可能です。本基板を使用することで、SVO ボードと組み合わせた GMSL カメラのエミュレーションなどに応用が可能です。

ブロック図

上図に本基板のブロック図を示します。本基板は GMSL シリアライザ MAX96707 を搭載しており、12bit パラレル、最大 ピクセルクロック 116MHz (最大転送レートは設定に依存) までの映像信号をサポートします。 パラレル信号の入力コネクタは SV シリーズ共通のインタフェースとなっており、SVO-03 等弊社基板と直結しての使用が可能です。出力コネクタは FAKRA 規格のコネクタ(シングルエンド転送)を実装しています。

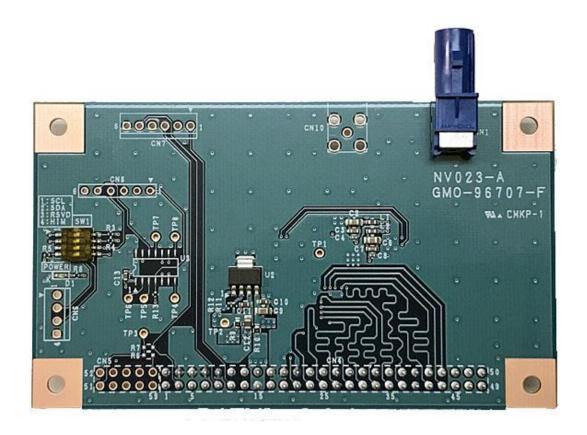
ボード接続イメージ



上図に本基板と SVO-03 基板のボード接続イメージを示します。図に示すように、両基板は 50 ピンのピンソケット (CN4) を介して接続されます。ねじ穴位置は両基板で共通なので、スペーサ等で両基板を固定することが可能です。

2. 基板形状

2.1. コネクタ配置図


本基板の主なコネクタの配置図を下図に示します。コネクタのピン番号、ピンアサインは「コネクタ詳細」の項で示します。

主要コネクタ配置図

^{*} CN5, CN10 は未実装

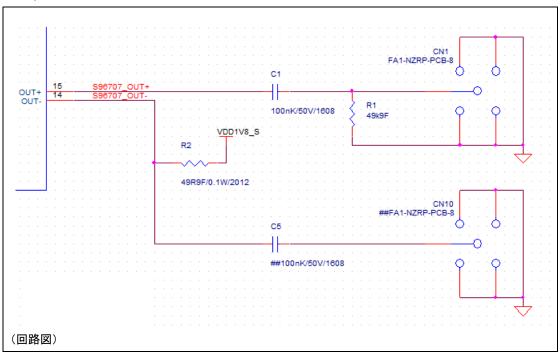
2.2. 基板写真

3. 詳細

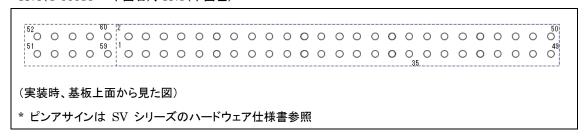
3.1. コネクター覧表

CN#	実装状態	用途	型番
CN1		GMSL 出力	FA1-NCRP-PCB-8
		(同軸)	(FAKRA 規格)
CN4		パラレル入出力	C-00086
CN5	未実装		N/A
CN6	未実装	I2C 入出力コネクタ	171825-4
CN7	未実装	同期配線用コネクタ	171825-6
CN10	未実装	GMSL 出力	FA1-NCRP-PCB-8
		(差動)	(FAKRA 規格)
CN8	未実装	ISP コネクタ	A2-6PA-2.54DSA(71)

⁻ 同期配線用コネクタ(CN7)は複数ボードを使用した出力システムでの基板間通信、および将来の拡張用の

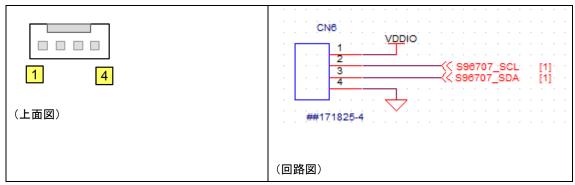

コネクタです。

- I2C 入出力コネクタ (CN6) は MAX96707 の I2C バスに直結されています。

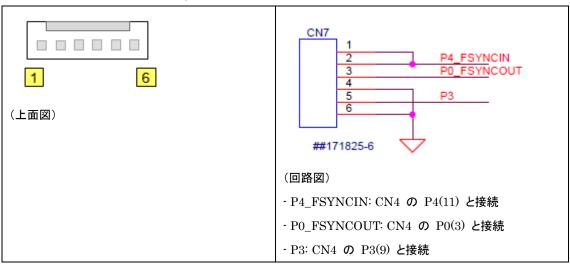

3.2. コネクタ詳細

以下に、本基板のコネクタの上面図(概略)およびピンアサイン(回路図より抜粋)を示します。

•CN1, CN10 (FA1-NZRP-PCB-8)



·CN4(C-00086 = 下図右)、CN5(下図左)


- CN4 と SVO 基板を接続して使用します。

•CN6 (171825-4 / TE Connectivity)

- MAX96707 の I2C バスと直結されています。
- コネクタは未実装です。

•CN7 (171825-6 / TE Connectivity)

- 複数の SVO-03 基板間でフレーム同期をとる場合に、このコネクタを経由して同期配線を行うことができます。 フレーム同期機能はカスタム対応となります。
- コネクタは未実装です。
- ライトアングル実装の場合、コネクタ型番 171826-4 を基板裏面に実装します。

3.3. DIP スイッチ設定

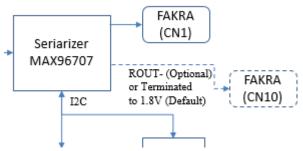
本基板には 4 bit の DIP スイッチが 1 個 (SW1) 実装されており、シリアライザ MAX96707 の初期設定 や I2C アドレス等の設定を行うことができます。

3.3.1. SW1 (MAX96707 / I2C 接続設定)

SW#	名前	機能
1	I2C_SCL	ON の場合、CN2 (SVO 側) に出力される I2C バスと MAX96707 の
2	I2C_SDA	I2C バスを接続します。OFF の場合両者の I2C バスは切断されます。
3	(Reserved)	(予約) 使用しません
4	GPO_HIM	ON: MAX96707 の GPO/HIM ピンを 30kΩの抵抗でプルアップしま
		す。
		OFF: MAX96707 の GPO/HIM ピンは解放状態にします。

3.4. I2C バス

本ボードは 1 系統の I2C バスがありますが、I2C アドレスの競合を防ぐため、シリアライザと SVO ボード (コネクタ CN4 側) 間の I2C バスを切り離し可能になっています。SW1 の #1 と #2 を ON に設定することで、SVO ボードとシリアライザの I2C バスが接続されます。シリアライザの I2C バスはコネクタ CN4 にも接続されています。


また、ボード起動時の初期設定や I2C Slave の実装が必要になる場合に備えて、PIC マイコンおよび ISP コネクタを実装できるパターンを備えています。PIC マイコン周辺の回路図は Appendix を参照してください。

3.5. 電源

本基板の電源はコネクタ CN2 に接続された 2 系統の電源 (VDDH, VDDL) より供給します。VDDH は 1.8V LDO に接続されており、3.3V および 1.8V 両方が IC 等の電源として使用されます。SVO ボードの VDDH 電圧は 3.3V に設定した上接続してください。

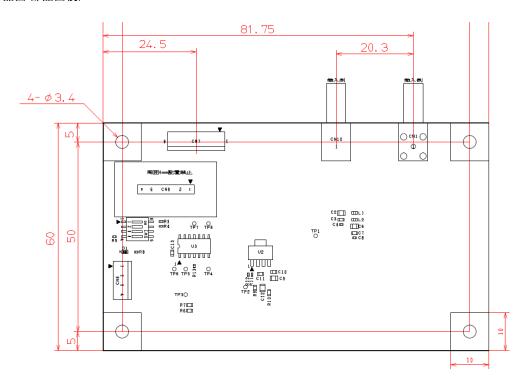
VDDL はシリアライザの IO 電圧として使用されます。本基板搭載のシリアライザ(MAX96707)は IO 電圧 1.8V のみをサポートしていますので、VDDL は必ず 1.8V に設定した上接続してください。

3.6. シリアライザ出力

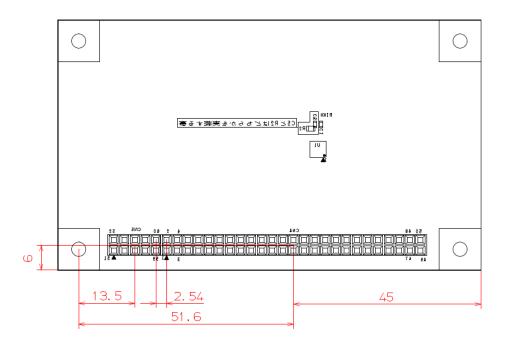
本基板では MAX96707 の OUT1+ 端子は CN1 に出力されています。また、OUT- 端子は 抵抗 R2 $(49.9~\Omega)$ を通して 1.8V に接続されています。通常は FAKRA コネクタを使用した同軸出力をサポートしています。

部品の実装を変更することで、OUT 端子を CN10 に出力することも可能です。CN1, CN10 を使用した差動出力を行う場合には R2 を未実装、C5、CN10 を実装としてください。

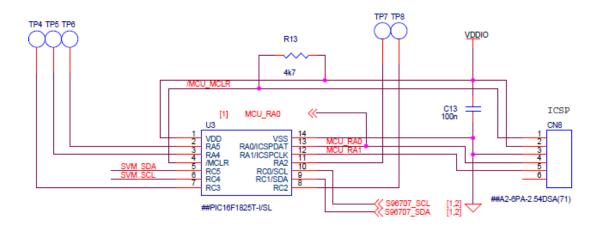
4. 主要諸元


項目	値	備考
基板寸法	101.6 x 60.0 mm	コネクタを含まない値
シリアライザ用電源	DC +3.3V	CN2 経由、SVO-03 等映像出力ボードの電源
		(VDDH)から供給
		内部で 1.8V に降圧
IO 電源	DC +1.8V	CN2 経由、SVO-03 等映像出力ボードの IO
		電源 (VDDL)から供給
画像入力	パラレル信号	CN2 より入力
		対応フォーマットは MAX96707 の規格参照
		コネクタのピン配置は SVO-03 に準ずる
画像出力	GMSL、同軸	実装部品変更により FAKRAx2 による
	(FAKRA コネクタ)	差動出力可能
シリアル通信	I2C 通信	CN4 (SVO 側コネクタ) もしくは CN6 より I2C
		信号を入力する
		カメラの I2C 通信応答のエミュレーションへの応
		用として、PIC マイコンにより I2C データを処理で
		きるよう、マイコン実装可能なパターンを設置

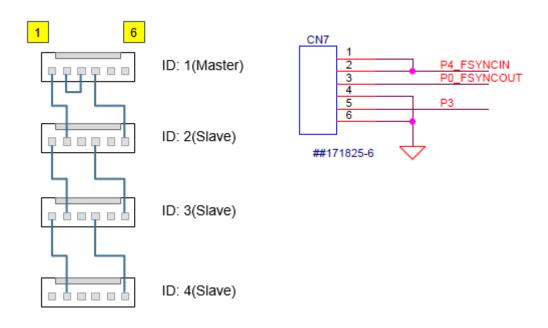
- 上記仕様は型番 NV023-A にのみ適用されます。
- IO 電源 (VDDL) に 3.3V を印加しないでください。


5. Appendix

5.1. 基板寸法図


(部品面/部品面視)

(半田面/部品面視)



5.2. PIC マイコン周辺回路図

5.3. 4 CH 同期出力システムでの配線例

CN7 経由で外部配線を行うことで、SVO の同期出力機能を使用した複数チャンネル同期出力が可能です。 以下は配線の参考資料です。

- レせプタクル型番 171822-6 (TE Connectivity)
- コンタクト型番 170262-1