GEO GW5410/5210 ISP 基板 (NV065-A) ハードウェア仕様書

第3版

[注意]

本基板の IO 電圧は 1.8V 固定です。 接続する基板の IO 電圧は必ず 1.8V に設定して下さい。

株式会社ネットビジョン

株式会社ネットビジョン

NV065-A GEO GW5410/5210 ISP 基板 ハードウェア仕様書 第2版

改訂履歴

版数	日付	内容	担当
第1版	2022/04/18	初版作成	折笠
第2版	2022/06/09	記述修正	折笠
第3版	2022/08/19	IO 電圧注意書き追加、CN1-3 コネクタピン配置追加	折笠

目次

1.	概要3
2.	基板形状4
2.1.	基板寸法図4
2.2.	基板写真5
3.	基板詳細6
3.1.	ボード接続図(Parallel 接続)
3.2.	ボード接続図(MIPI 接続) 7
3.3.	コネクター覧表
3.4.	CN1、CN2、CN3 ピン配置10
3.5.	スイッチ設定11
3.6.	LED インジケータ
3.7.	FT4222 モジュール
3.8.	GPIO
3.9.	ISP ファームウェア
3.10.	I2C Slave Address
3.11.	電源回路構成
4.	主要諸元18
5.	Appendix
5.1.	基板寸法図19

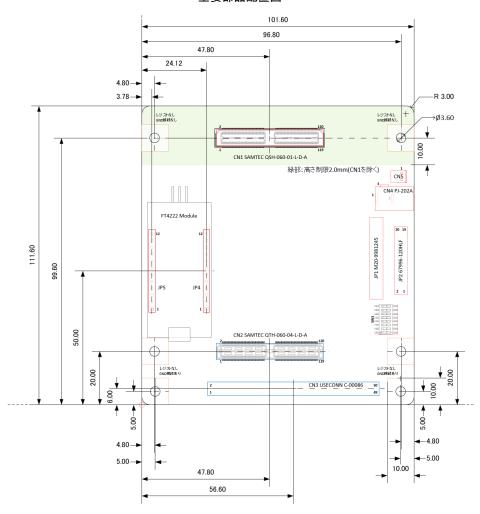
1. 概要

本仕様書は NV065-A 基板のハードウェア仕様書です。NV065-A 基板(以下本基板と表記)は、MIPI の入出力とパラレル出力を持ち、入力された映像を GEO 社 GW5 ISP を介して画像処理を行い、出力するための基板です。複数のコンフィギュレーションに柔軟に対応可能な回路構成となっており、現状 2 種のコンフィグレーションを持ちます。基板品番 NV065-A-E は ISP として GW5210 を、NV065-A-G は ISP として GW5410 を搭載します。NV065-A-E はローンチカスタマー向けの仕様となっておりますので、通常は NV065-A-G をご選択頂く形になります。ISP をピンコンパチの GW5 シリーズから選択頂くことも可能です。ISP のコア電源の AVS 回路の定数は、使用される ISP 型番に応じて調整を致します。

NV065-A Block Diagram CN1: SAMTEC OSH-060-01-L-D-A 4Lane MIPI x2 for NV SerDes Boards CN5 **DIP Switch Settings** GPIO 5V 3.3V 1.8V 1.1.2: GWS 12C Slave Address Select 3: Connect GW5 Reset with SVM Reset Output 4: Connect GW5 Reset to GND through IX ohm 5.6: Connect Deserializer 12C Bus with SVM 7,8: Connect GW5 12C Slave Bus with SVM MIPI D5-D8, CLK2 Tr OUT FET BusSW SVM_I2C SVM_GPIO CN4 DC IN IO Expander DC/DC MIPI_RX1 I2C_0 (Master) MIPI_RX0 TCA9534PWR SVM Load Switch 3.3V 12C ADDR: 0x22 /RESET USB Mini-B Connector FTDI I2C_2 (Slave) UMFT4222EV Quad Bus DC/DC 0.9V SPI_1 (Slave) Module Quad Bus VDD SRX_VDDA STX_VDDA ISP STX/STX0/ STX1_VDDPLL SPI NOR Flash **GEO** SPI_0 (Master) IO VDD0-2 DC/DC 1.8V VDD_PLL SX_VDDHA GW5210/5410 24MHz OSC ECS-2520MV-240-BN-TR VDD_QPS **Boot Strap** I2C 1 Boot Mode (SPI0_MOSI/GPO0): 00: Boot from SNOR, if failure from I2C2 pins 10: Boot from I2C2 pins TPs & JTAG 67996-120HLF JTAG IOVDD2 Voltage (GPO2/GPO1): 00: 1.8V IOVDD1 Voltage (GPO5/GPO4): 00: 1.8V CLK1 VSYNC, PCLK Adjustable CN3: USECONN C-00086 CN2: SAMTEC QTH-060-04-L-D-A 16-bit Parallel for SVM-03 4Lane MIPI x2 for SVM-06

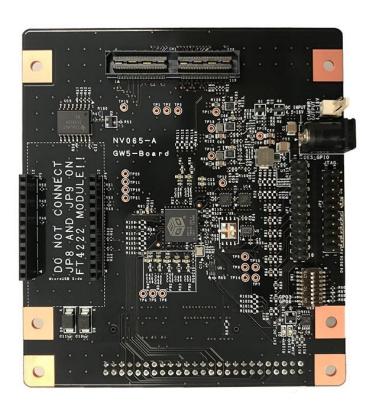
ブロック図

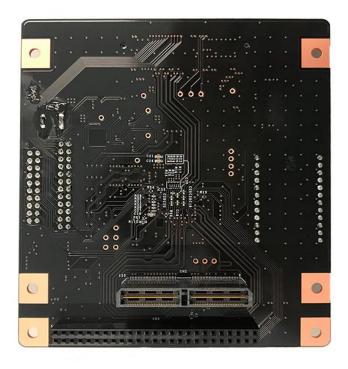
本基板は映像入力元として、2 系統の MIPI 入力を持ち、各々が ISP に接続されています。MIPI 入力コネクタ(CN1)は、弊社製各種デシリアライザ基板に接続し、使用されます。映像出力先として、MIPI と 16-bit Parallel の 2 系統を備えています。MIPI 出力コネクタ(CN2)は弊社製 SVM-06 基板と接続され、16-bit Parallel 出力コネクタ(CN3)は弊社製 SVM-03 基板と接続されます。両コネクタは排他接続となります。


本基板の動作電源は CN4 の DC ジャックより供給され、内部の降圧回路を介して各種 IC へと供給されます。

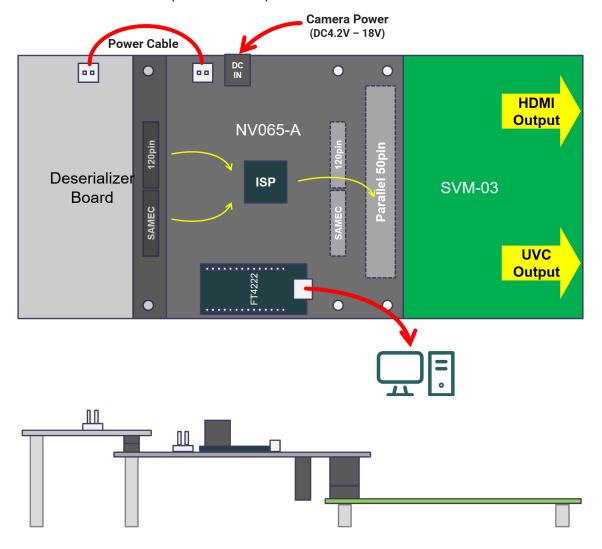
同時に CN4 より入力された電圧は、FET を介して CN5 へと出力され、CN1 に接続されたデシリアライザ基板のカメラ電源となります。FET の Gate は SVM ボードから制御されます。ISP の設定や FW 更新等には基板上に取り付けられる FTDI 社 FT4222 モジュールに、USB ケーブルで接続された PC から行います。

2. 基板形状


2.1. 基板寸法図


本基板の基板寸法図及び主要部品配置図を下図に示します。コネクタのピン番号、ピンアサインは「コネクタ詳細」の項で示します。

主要部品配置図

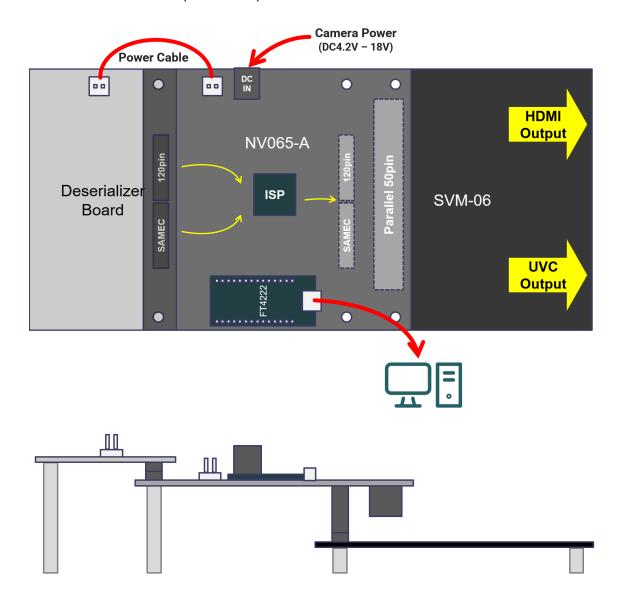

2.2. 基板写真

3. 基板詳細

3.1. ボード接続図(Parallel 接続)

上図は、SVM-03と接続し、映像出力インターフェースとして 16-bit Parallel を使用する場合の接続図です。

SVM-03 VR2 の可変抵抗を調整し、VDDL(IO 電圧)は必ず 1.8V に設定して下さい。


本基板の電源として DC ジャック(CN4)に AC アダプタを接続します。入力された電源は、FET を介して CN5 からデシリアライザ基板のカメラ電源コネクタへと接続します。そのため、入力する電圧は、カメラの電源電圧と一致させる必要があります。入力電圧は、4.2V から 18V の間となるようにしてください。

16-bit Parallel 出力コネクタ(CN3)は SVM-03 と接続され、映像信号を SVM-03 へ出力します。

 ${
m FT4222}$ モジュールと PC は、 ${
m Micro~USB}$ ケーブルで接続し、 ${
m FW}$ の書き込みや画質調整には、 ${
m GEO}$ 社製ツールを使用します。

SVM-03からの映像出力は、HDMI 出力もしくは UVC 出力のどちらかを、SVM-03の基板上の DIPSW(SW2) で選択します。#1、8 ON -> UVC Mode, #1 ON -> HDMI Mode

3.2. ボード接続図(MIPI 接続)

上図は、SVM-06と接続し、映像出カインターフェースとして MIPI を使用する場合の接続図です。

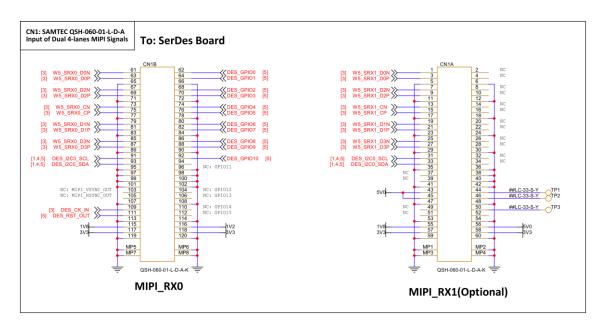
SVM-06 JP1 は必ず 5-6pin 間をショートさせ、IO 電圧を 1.8V に設定して下さい。

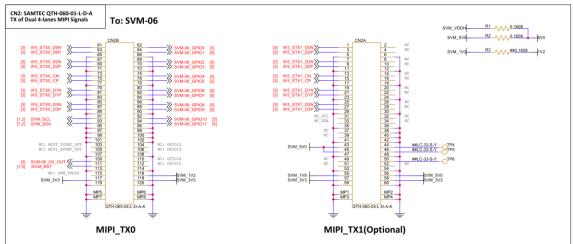
本基板の電源として DC ジャック(CN4)に AC アダプタを接続します。入力された電源は、FET を介して CN5 からデシリアライザ基板のカメラ電源コネクタへと接続します。そのため、入力する電圧は、カメラ電源電圧と一致させる必要があります。入力電圧は、4.2V から 18V の間となるようにしてください。

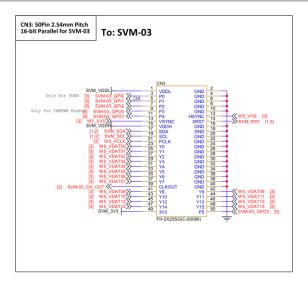
MIPI 出力コネクタ(CN2) は SVM-06 と接続され、映像信号を SVM-06 へ出力します。

 ${
m FT4222}$ モジュールと PC は、Micro USB ケーブルで接続し、FW の書き込みや画質調整には、GEO 社製ツールを使用します。

SVM-06 からの映像出力は、HDMI mode における UVC 同時出力に対応しています。 (SW2:全て OFF で HDMI コネクタと USB コネクタの両方から映像を出力します。)


3.3. コネクター覧表


CN#	用途	型番	ピン配置
CN1	MIPI 4-Lane Dual Input	SAMTEC QSH-060-01-L-D-A	2
	弊社デシリアライザ基板の		
	MIPI コネクタが接続されるた		1 119
	め、SVM-06 CN4 と互換性を		
	持ちます。		
CN2	MIPI 4-Lane Dual Output	SAMTEC QTH-060-04-L-D-A	2,000,000,000,000,000,000,000,000,000,0
	SVM-06 CN4 と接続されるた		
	め、弊社デシリアライザ基板の		100000000000000000000000000000000000000
	MIPI コネクタと互換性を持ち		※基板上面から透過して見た図
	ます。		
CN3	16-bit Parallel Output	USECONN C-00086	2 1 50
	SVM-03 CN4 と接続されるた	or equivalent	※基板上面から透過して見た図
	め、弊社デシリアライザ基板の		
	パラレルコネクタと互換性を持		
	ちます。		
CN4	Power Input	CUI Devices PJ-202A	Φ 2.1mm, Center Plus MATING PLUG Jack Insertion Depth: 9.0 mm
CN5	Power Output	Molex 22-04-1021	


株式会社ネットビジョン NV065-A GEO GW5410/5210 ISP 基板 ハードウェア仕様書 第 2 版

CN#	用途	型番	ピン配置
			CAMPWR: 0UTPUT 4. 2-18V 2 0 1 CN5 ▲
JP1	GPIO Connection Selection	HARWIN M20-9981245 or equivalent	JP1 2 1 0 0 0 0 0 0 0 0 0 0 0 0
JP2	JTAG	Amphenol 67996-120HLF	19 1 20 JTAG 2
JP4, JP5	FT4222 Module	USECONN FH-1x12SG/RH	FT4222 Module 12 12 0 13 12 12 0 14 15 15 15 15 15 15 15 15 15 15 15 15 15

3.4. CN1、CN2、CN3 ピン配置

3.5. スイッチ設定

本基板には ISP 設定用スイッチ SW1 が実装されています。SW1 の機能は下表の通りです。

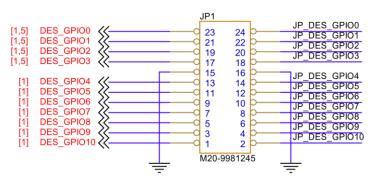
SW#	名前	出荷状態	機能
1	W5_GPO6	OFF	SNOR リカバリーモードで起動させる際の I2C Slave Address を
2	W5_GPO3	OFF	設定する Bootstrap の Hi/Lo を切り替えます。
			ON: Hi, OFF: Lo
			[W5_GPO6] – [W5_GPO3]
			Lo – Lo : 0xD8 (default)
			Lo – Hi : 0xDA
			Hi – Lo: 0xDC
			Hi – Hi : 0xDE
3	1V8_REG_PG	ON	ISP のリセットピンを/SVM_RST と接続します。この設定により、
			SVM ボード側から、ISP をリセット状態にすることが可能になりま
			す。ISP 及びカメラへの電源供給後に ISP のリセットを解除するた
			め、出荷状態では ON になっています。
			ON: SVM ボードから ISP をリセット可能
			OFF: SVM ボードから ISP をリセット不可
4		OFF	ISP のリセットピンを $1k\Omega$ でプルダウンします。この設定により、
			ISP が常にリセット状態になります。
			ON: ISP が常にリセット状態
			OFF: 通常状態
5	DES_I2C0_SCL	OFF	デシリアライザ基板の I2C バスを SVM ボードに接続します。
6	DES_I2C0_SDA	OFF	※デシリアライザの設定は ISP から行うため、通常使用しません。
			ON: I2C バスを SVM ボードに接続
			OFF: I2C バスを SVM ボードから切断
7	FT_I2C_SCL	OFF	ISP の I2C Slave バスを SVM ボードに接続します。
8	FT_I2C_SDA	OFF	ON: I2C バスを SVM ボードに接続
			OFF: I2C バスを SVM ボードから切断

3.6. LED インジケータ

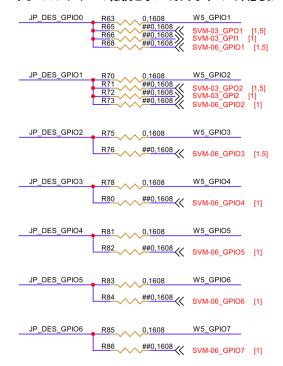
LED#	名前	機能
D1	EXT_DC_IN	DC ジャックに電源が供給された時に点灯します。
D2	CAM_PWR	SVM の GPIO からカメラ電源供給が有効化された時に点灯します。

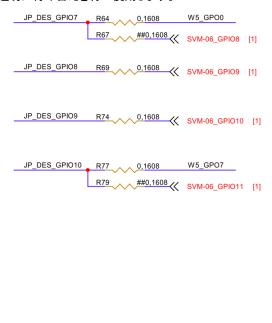
3.7. FT4222 モジュール

本基板の JP4、JP5 には FTDI 社 FT4222 モジュール(UMFT4222EV)が挿入されます。挿入には向きがありますので、基板シルク「Micro USB Side」側に Micro USB コネクタが来るように挿入する必要があります。 FT4222 モジュールは IO 電圧用に 1.8V の電圧レギュレータを内蔵していますが、本基板の IO 電圧は 1.8V のため、本基板と接続する際は使用しません。FT4222 の VCC 電源も、本基板から 3.3V を供給します。そのため、モジュール上の JP8、JP9 を必ず取り外した状態で使用します。JP2、JP3 は動作モードの設定用ジャンパーピンです。共に Lo に設定するため、2-3 間をショートさせる必要があります。 弊社が FT4222 モジュールを同梱して出荷する場合、上記設定は反映された状態で出荷されます。


3.8. GPIO

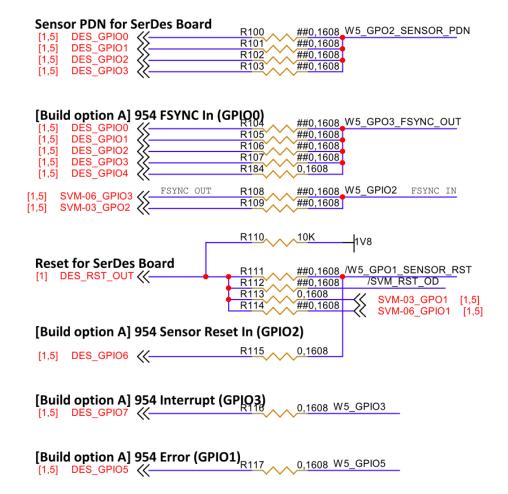
本基板は、デシリアライザ基板上のデシリアライザ IC の GPIO への接続先を、ISP の各 GPIO ピン、またはSVM ボードの各 GPIO ピンから選択可能な回路構成になっています。


接続経路は、デシリアライザ基板へ繋がる GPIO(DES_GPIO[0:10])へ 0Ω 抵抗経由で接続される経路と、JP1 を通して接続される経路の 2 種類があります。JP1 を通して接続される経路は、出荷状態では全てのジャンパーピンが取り外されているため、切断状態になっています。


◆接続経路: JP1 経由

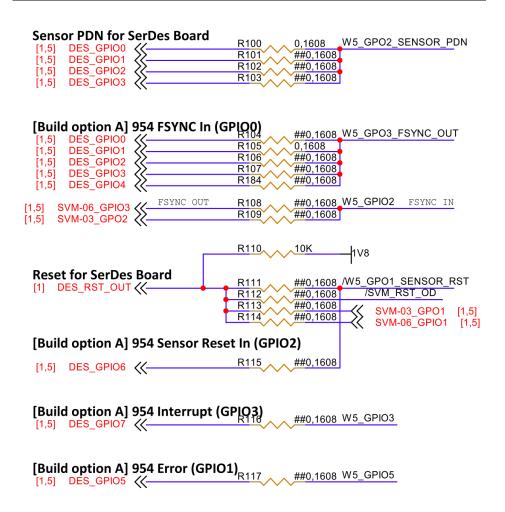
デシリアライザ基板へ繋がる GPIO(DES_GPIO[0:10])は、JP1 を通して JP_DES_GPIO[0:10]に接続されます。 出荷時は、JP1 の全てのジャンパーピンは取り外されており、DES_GPIO*及び JP_DES_GPIO*間は切断されています。

 $JP_DES_GPIO[0:10]$ と、ISP の各 GPIO ピン及び SVM ボードの GPIO との接続は、 0Ω 抵抗を介して行います。1608 サイズの抵抗となっておりますので、必要に応じて適切に付け替えを行い使用します。



◆接続経路: 0Ω抵抗経由

 0Ω 抵抗で直接接続される経路は、NV065-A-E と NV065-A-G とで異なる構成となっています。


● NV065-A-E 基板は、弊社 FPI-954-HF ボード(FPD Link III DS90UB954 デシリアライザ搭載)への接続 を前提とした回路構成となっています。

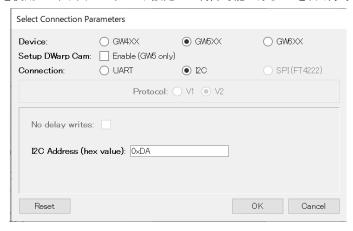
Deserializer Side	ISP Board Side	Note
DES_GPIO4	W5_GPO3_FSYNC_OUT	To 954 FSYNC Input
DES_GPIO5	W5_GPIO5	To 954 Error Output
DES_GPIO6	/W5_GPO1_SENSOR_RST	To 954 Sensor Reset Input
DES_GPIO7	W5_GPIO3	To 954 Interrupt Input

● NV065-A-G 基板は、GEO 社 Evaluation Board に近い回路構成となっています。

Deserializer Side	ISP Board Side	Note
DES_GPIO0	W5_GPO2_SENSOR_PDN	
DES_GPIO1	W5_GPO3_FSYNC_OUT	

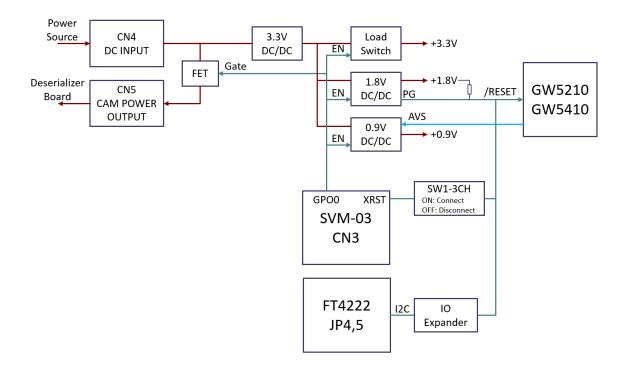
3.9. ISP ファームウェア

本基板を使用するためには、事前に ISP のファームウェアを書き込む必要があります。ファームウェアの書き込みの際は、FT4222 モジュールと PC を接続し、GEO 社の書き込みツールを使用してください。ツールの詳細や、使用方法については、GEO 社の公式ドキュメントをご確認ください。本基板は GEO 社 Evaluation Board と同様の構成を取っているため、ファームウェア書き込み時の ISP へのリセットは FT4222 から自動的に行われます。そのため、DIPSW やジャンパーピンでの設定は特に不要です。

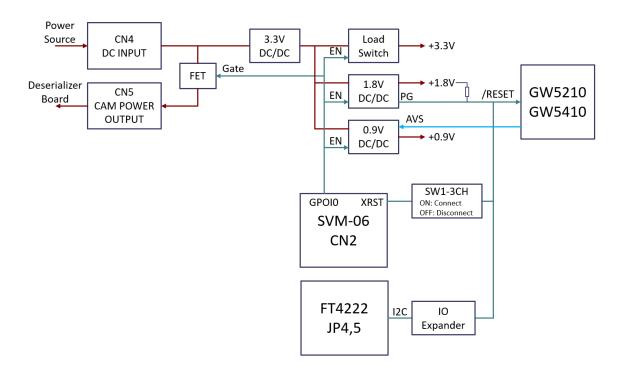

[参考] 弊社での書き込み時は、以下コマンドで書き込みを行っております。(2022/04/18 時点)

.¥flash_util.exe -w0 -tw5 <file path of firmware>

3.10. I2C Slave Address


ISP の Host からの制御用 I2C Slave Address は 0xDA(8bit)となっています。

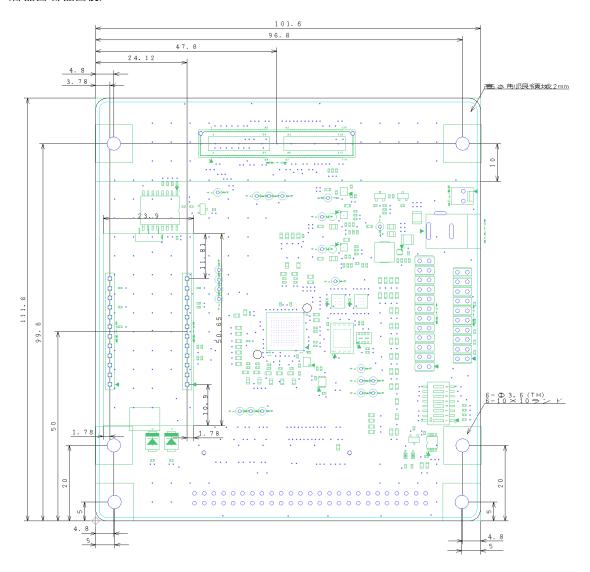
GEO 社 ISPTune を使用して、下図のパラメータ設定にて制御可能であることを、出荷時に確認しています。



3.11. 電源回路構成

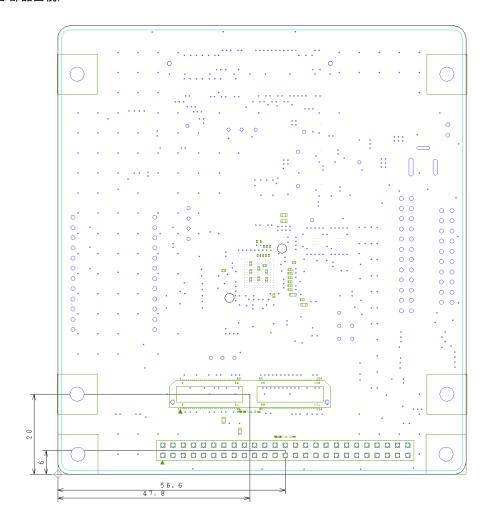
♦SVM-03 (Parallel Output from ISP)

\diamond SVM-06 (MIPI Output from ISP)


4. 主要諸元

項目	値	備考
基板寸法	101.6 x 111.6 mm	
供給電源	DC 4.2-18V	CN5 経由でカメラ電源を兼ねる
	Center Plus,	内部電源はボード上レギュレータにより生成
	Ф2.1mm / 5.5mm Plug	
ISPコア電源	DC +0.9V	AVS 回路により ISP から電圧動的制御
IO 電圧	DC +1.8V	
画像入力	2x MIPI CSI-2	CN1 より入力
	4-lane 1.5Gbps/lane	
画像出力	MIPI:	MIPI: CN2 から出力
	2x MIPI CSI-2	
	4-lane 1.5Gbps/lane	Parallel: CN3 から出力
	Parallel:	
	1x 16-bit Parallel	
	150MHz Interface Clock	
シリアル通信	I2C	内部配線は回路図参照
	SPI	

5. Appendix


5.1. 基板寸法図

(部品面/部品面視)

[L]〈部品〉面視]

(半田面/部品面視)

[L] (部品)面視]